Exercise 20

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

$$
f(x)=-\frac{1}{3} x^{2}-2 x+3
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
f(x)=-\frac{1}{3}\left(x^{2}+6 x-9\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=6$, which means $B=3$ and $B^{2}=9$. Add and subtract 9 on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
f(x) & =-\frac{1}{3}\left[\left(x^{2}+6 x+9\right)-9-9\right] \\
& =-\frac{1}{3}\left[(x+3)^{2}-18\right] \\
& =-\frac{1}{3}(x+3)^{2}+6
\end{aligned}
$$

Therefore, the vertex of the parabola is $(-3,6)$. The axis of symmetry is $x=-3$, and the maximum (because the coefficient of x^{2} is negative) is $y=6$.

